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Orthomodular Bell-Kochen-Specker Theorem

Derek Smith1

Four elements in an orthomodular lattice of height four generate a partial Boolean
subalgebra that contains a Bell-Kochen-Specker theorem. This result directly explains
and generalizes the 4-dimensional Bell-Kochen-Specker theorems of various authors.
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1. INTRODUCTION

In Smith (1999), it is shown that any 4-generator partial Boolean algebra
(pBa) induced by an orthomodular lattice of height 4 or less is finite, establishing
that the set of 5 generators for Conway and Kochen’s infinite pBa in C

4 (Kochen,
1996) is minimal in number. Here, we show that one of the 4-generator cases, when
the generators a, b, c, d have only the compatibilities a � b � c � d � a, leads to a
Bell-Kochen-Specker (BKS) theorem which has a purely orthomodular character.
This example explains and generalizes the 4-dimensional BKS theorems of many
authors, including Peres (1990, 1993), Mermin (1990, 1993), Kernaghan (1994)
and Cabello et al. (1996a,b).

Recent papers have attempted to minimize the size of a configuration of
vectors in R

4, as well as the number of equations involving those vectors, while
maintaining a contradiction with the sum rules of quantum mechanics. Another,
and possibly more meaningful, measure of the simplicity of a BKS configuration
is the number of elements required to generate a pBa containing a BKS theorem.
The example we present shows that the minimum for this measure is four, since
Coray (1970) has shown that any 3-generator pBa can be embedded in a Boolean
algebra.

2. A 4-GENERATOR PARTIAL BOOLEAN ALGEBRA

We follow the notations of Kalmbach (1983) in discussing orthomodular
lattices, except that we use � to denote compatibility. Within the orthomodular
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lattice L described below, we will be interested in the structure of B(a, b, c, d),
the pBa generated by a, b, c, d . See (Kochen and Specker, 1967; Kochen, 1996)
for discussions of partial Boolean algebras.

We set L = �{a, b, c, d} to be an orthomodular lattice generated by distinct,
non-trivial, and pairwise non-complementary elements a, b, c, d with a � b � c �
d � a. We wish to keep the height of L as small as possible, so we insist that all
of the (central) elements aεa ∧ cεc and bεb ∧ dεd are equal to 0, where each εα

determines either α or its orthocomplement α′, so that

MO2 ∼= �{a, c} ∼= �{b, d}.
This implies that we must have, for example, d � � (aεa ∧ bεb ), since otherwise we
find that aεa = 0. So each aεa ∧ bεb �= 0, and thus

24 ∼= �{a, b} ∼= �{b, c} ∼= �{c, d} ∼= �{d, a},
the latter three isomorphisms following from the first by the cyclic symmetry of
the compatibilities among the generators.

Define

x = (a ∧ b) ∨ (a′ ∧ b′)
y = (b ∧ c) ∨ (b′ ∧ c′)
z = (c ∧ d) ∨ (c′ ∧ d ′)
w = (d ∧ a) ∨ (d ′ ∧ a′).

Each of these elements lies on the middle level of the respective 24 displayed above
and thus is an element of a generating pair for this Boolean algebra. Figure 1
displays the compatibilities among the eight named elements by edges joining
them, with any two elements on a cycle of three edges (thought of as on a flat
torus) generating a 24.

In the case that x � z and w � y, we see that

L ∼= �{a, x , z, d} ∼= �{b, x , z, c} ∼= �{a, b, y, w} ∼= �{d, c, y, w},
with the same cyclic compatibilities among the four new sets generating L as for
a, b, c, d. Thus the above arguments for a, b, c, d may equally be applied to them.
In particular, we have

24 ∼= �{x , z} ∼= �{y, w},

Fig. 1. Compatibilities among certain generators of 24

subalgebras in L.
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and we set

u = (x ∧ z) ∨ (x ′ ∧ z′)
v = (y ∧ w) ∨ (y′ ∧ w ′).

What’s striking is that we must now have u′ = v . For on the one hand,

y ∧ w = ((b′ ∨ c) ∧ (b ∨ c′)) ∧ ((a′ ∨ d) ∧ (a ∨ d ′))

= ((b′ ∨ c) ∧ (a′ ∨ d)) ∧ ((b ∨ c′) ∧ (a ∨ d ′))

= ((a′ ∧ b′) ∨ (c ∧ d)) ∧ ((a ∧ b) ∨ (c′ ∧ d ′))

≤ ((a′ ∧ b′) ∨ (c ∧ d)) ∨ ((a ∧ b) ∨ (c′ ∧ d ′))

= ((a ∧ b) ∨ (a′ ∧ b′)) ∨ ((c ∧ d) ∨ (c′ ∧ d ′))

= x ∨ z,

where the third equality uses the fact that {a′, b′, c, d} and {a, b, c′, d ′} are Greechie
sets. On the other hand,

y ∧ w = ((b′ ∨ c) ∧ (b ∨ c′)) ∧ ((a′ ∨ d) ∧ (a ∨ d ′))

= ((b′ ∨ c) ∧ (a ∨ d ′)) ∧ ((b ∨ c′) ∧ (a′ ∨ d))

= ((a ∧ b′) ∨ (c ∧ d ′)) ∧ ((a′ ∧ b) ∨ (c′ ∧ d))

≤ ((a ∧ b′) ∨ (c ∧ d ′)) ∨ ((a′ ∧ b) ∨ (c′ ∧ d))

= ((a′ ∧ b) ∨ (a ∧ b′)) ∨ ((c ∧ d ′) ∨ (c′ ∧ d))

= x ′ ∨ z′.

Thus, y ∧ w ≤ ((x ∨ z) ∧ (x ′ ∨ z′)) = u′. By a similar computation, y′ ∧ w ′ ≤ u′,
and thus v = ((y ∧ w) ∨ (y′ ∧ w ′)) ≤ u′.

Writing v = ((y′ ∨ w) ∧ (y ∨ w ′)) and u′ = ((x ′ ∧ z) ∨ (x ∧ z′)), a similar
computation shows that u′ ≤ v , and so we conclude that u′ = v .

Figure 2 displays the compatibilities among the ten named elements. The pBa
B(a, b, c, d) is then comprised of precisely the elements contained in any of the
six copies of 24.

Fig. 2. Compatibilities within all 24 subalgebras in L .
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3. EXPLAINING 4-DIMENSIONAL BKS THEOREMS

A BKS theorem can be seen in Fig. 2 in the following way. Each of the six
3-cycles in Fig. 2 corresponds to a Boolean subalgebra 24 with four atoms. Seeing
that each of the sets

{a, b, x}, {b, c, y}, {c, d , z}, {d , a, w}, {x , z, u}, {y, w , v}
has the property that each of its elements covers a common atom, a 0-1 function
assigning 1 to one atom and 0 to the other three atoms in any 24 will cause 1 to
be assigned to an atom covered by either one or three elements in each set above.
But the last column of Fig. 2 displays {x , z, u′}, not {x , z, u}, in which either zero
or two of its elements will cover the atom assigned the value 1. A contradiction
now comes from the fact that the sum over the rows of Fig. 2 is odd, while over
the columns it is even.

Figure 3 presents a rational example of this phenomenon in R
4. The BKS

theorems in R
4 of Peres, Kerhaghan, and Cabello et al. rely on vectors determined

by the 2-dimensional subspaces in Fig. 3. Figure 3 may be seen as depicting
the compatibilities among the nine 2-dimensional subspaces spanned by pairs of
vectors taken from the following six tetrads of orthogonal vectors in R

4:

C1 = v0

++00
v1

+-00
v2

00++
v3

00+-
C2 = +0+0 +0-0 0+0+ 0-0+
C3 = +00+ +00- 0++0 0+-0
R1 = +000 0+00 00+0 000+
R2 = ++++ ++- +-+- +--+
R3 = +++- ++-+ +-++ -+++

Here, + represents +1 and - represents −1. The (i, j)th entry of Fig. 3 is
both the 2-space spanned by v0 and vi of “column” C j and the 2-space spanned
by v0 and v j of “row” Ri , except when i = j = 3. In that case, the 2-spaces are
orthogonal complements.

Fig. 3. A rational 4-generator Bell-Kochen-Specker theorem in R
4.
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The BKS theorem of Peres is based on the fact that no appropriate 0-1 function
exists for the six tetrads above. Kernaghan and Cabello et al., also use a subset of
the 1-dimensional subspaces corresponding to the 24 vectors displayed above. It
is not surprising that these vectors (and their negatives) have been utilized, since
properly scaled they correspond to the vectors of norm 1 and 2 in the integral lattice
D4, one of the two most useful 4-dimensional lattices (Conway and Sloane, 1993;
pp. 118–119). The Voronoi cell of this lattice is the regular 4-dimensional polytope
called the 24-cell (Coxeter, 1973), which has been mentioned in Peres (1993) and
Aravind and Lee-Elkin (1998), the latter reference also describing BKS theorems
based on the two dual 4-dimensional polytopes known as the 120- and 600-cells.
Among other uses, the lattice D4 also corresponds to the lattice of Hurwitz integral
quaternions (Conway and Smith, 2003).

Mermin, following Peres, presents a nine-element Kochen-Specker contradic-
tion in C

4. This multiplicative example corresponds to Fig. 2 by setting a = σx ⊗ 1,
b = 1 ⊗ σx , c = σy ⊗ 1, and d = 1 ⊗ σy , where σx and σy are Pauli spin matrices.
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